Що таке емпіричне правило?
Емпіричне правило, яке також називають правилом три сигми або правилом 68-95-99.7, - це статистичне правило, яке говорить, що при нормальному розподілі майже всі дані підпадають під три стандартних відхилення (позначаються σ) середнього значення (позначається µ). Розбиті, емпіричне правило показує, що 68% потрапляє в межах першого стандартного відхилення (µ ± σ), 95% в межах перших двох стандартних відхилень (µ ± 2σ) і 99, 7% в межах перших трьох стандартних відхилень (µ ± 3σ).
Емпіричне правило
Розуміння емпіричного правила
Емпіричне правило часто використовується в статистиці для прогнозування кінцевих результатів. Після обчислення стандартного відхилення та перед збиранням точних даних це правило може бути використане як приблизна оцінка результату майбутніх даних. Цю вірогідність можна використати тимчасово, оскільки збір відповідних даних може зайняти багато часу або навіть неможливо. Емпіричне правило також використовується як приблизний спосіб перевірити "нормальність" розподілу. Якщо занадто багато точок даних випадає за рамки трьох стандартних меж відхилення, це говорить про те, що розподіл не є нормальним.
Ключові вивезення
- В емпіричному правилі зазначено, що майже всі дані лежать в межах 3 стандартних відхилень середнього значення для нормального розподілу. За цим правилом 68% даних підпадає під одне стандартне відхилення. Дев'яносто п'ять відсотків даних лежить у межах двох стандартних відхилень. три стандартних відхилення становить 99, 7% даних.
Приклади емпіричного правила
Припустимо, популяція тварин у зоопарку, як відомо, зазвичай розподіляється. Кожна тварина живе в середньому до 13, 1 року (середнє значення), а середнє відхилення тривалості життя - 1, 5 року. Якщо хтось хоче дізнатися про ймовірність того, що тварина проживе довше 14, 6 років, він може скористатися емпіричним правилом. Знаючи, що середній показник розподілу становить 13, 1 років, для кожного стандартного відхилення виникають такі вікові діапазони:
- Одне стандартне відхилення (µ ± σ): (13, 1 - 1, 5) до (13, 1 + 1, 5), або 11, 6 до 14, 6, два стандартних відхилення (µ ± 2σ): 13, 1 - (2 х 1, 5) до 13, 1 + (2 х 1, 5), або від 10, 1 до 16, 1Три стандартні відхилення (µ ± 3σ): 13, 1 - (3 x 1, 5) до 13, 1 + (3 x 1, 5), або, 8, 6 до 17, 6
Людині, яка вирішує цю проблему, необхідно обчислити загальну ймовірність того, що тварина проживе 14, 6 і більше років. Емпіричне правило показує, що 68% розподілу припадає на одне стандартне відхилення, в даному випадку - від 11, 6 до 14, 6 років. Таким чином, решта 32% розподілу лежить поза цим діапазоном. Половина лежить вище 14, 6, а половина лежить нижче 11, 6. Так, ймовірність того, що тварина проживає більше 14, 6, становить 16% (обчислено як 32%, розділене на два).
В якості іншого прикладу, припустімо, що тварина в зоопарку живе до 10-річного віку зі стандартним відхиленням 1, 4 року. Припустимо, спроби зоопарку з’ясувати ймовірність того, що тварина живе більше 7, 2 року. Цей розподіл виглядає так:
- Одне стандартне відхилення (µ ± σ): 8, 6 до 11, 4 роківДві стандартні відхилення (µ ± 2σ): 7, 2 до 12, 8 років Три стандартні відхилення ((µ ± 3σ): 5, 8 до 14, 2 року
Емпіричне правило зазначає, що 95% розподілу лежить у межах двох стандартних відхилень. Таким чином, 5% лежить поза двома стандартними відхиленнями; наполовину вище 12, 8 років і наполовину нижче 7, 2 років. Таким чином, ймовірність прожити більше 7, 2 року становить:
95% + (5% / 2) = 97, 5%
